ObjectivesSjögren's syndrome (SS) is a chronic autoimmune disease characterized by inflammatory lesions in the salivary and lacrimal glands, which are caused by distinct lymphocytic infiltrates. Female non-obese diabetic (NOD) mice spontaneously develop inflammatory lesions of the salivary glands with SS-like pathological features. Previous studies have shown that MyD88, a crucial adaptor protein that activates innate immune signaling, affects lymphocytic infiltration, but its detailed role remains unclear. In this study, we investigated the role of MyD88 through gene expression profiling in the early phase of pathogenesis in the salivary glands of female NOD mice. MethodsSubmandibular glands collected from 10-week-old female wild-type and Myd88-deficient NOD mice were used for RNA preparation, followed by microarray analysis. The microarray dataset was analyzed to identify Myd88-dependent differentially expressed genes (DEGs). Data generated were used for GO enrichment, KEGG pathway, STRING database, and INTERFEROME database analyses. ResultsMyd88 deficiency was found to affect 230 DEGs, including SS-associated genes, such as Cxcl9 and Bpifa2. Most of the DEGs were identified as being involved in immunological processes. KEGG pathway analysis indicated that the DEGs were putatively involved in autoimmune diseases, such as systemic lupus erythematosus and rheumatoid arthritis. Furthermore, the DEGs included 149 interferon (IFN)-regulated genes. ConclusionsMyD88 is involved in the expression of specific genes associated with IFN-associated immunopathological processes in the salivary glands of NOD mice. Our findings are important for understanding the role of MyD88-dependent innate immune signaling in SS manifestation.
Read full abstract