Organic saline wastewater has become a concern in recent decades due to its resistance to biological treatment and potential harm to municipal wastewater treatment plants. While photocatalytic methods have been used for treatment, they often lead to catalyst deterioration. The use of salt-tolerant catalysts presents a viable solution for treating organic saline wastewater. In this study, a Zn-rich g-C3N4 was synthesized, demonstrating excellent performance in removing 2,4-DCP and its derivatives from saline wastewater. More than 75.6% of 2,4-DCP was effectively removed with the addition of Zn-rich g-C3N4, nearly doubling the removal rate compared to pure g-C3N4 and those doped with Co, Ag, Mo, and Bi. Notably, the removal efficiency of 2,4-DCP slightly increased as salinity rose from 0.1 to 2.3 wt.%. Adding 0.1 g L−1 of Zn-rich g-C3N4 resulted in the removal of 2,4-DCP, 2-chlorohydroquinone, chloroacetophenone, and 2-chloropropionic acid by 99.3%, 99.8%, 98.2%, and 99.9%, respectively, from a real saline wastewater sample with 2.2 wt.% salinity, corresponding to a 67.7% removal of TOC. The EPR results indicated that Zn-rich g-C3N4 generated more free radicals compared to pure g-C3N4, such as·OH and Cl, to degrade organic contaminants. The degradation pathway revealed that 2,4-DCP was first dechlorinated into p-phenol and catechol, which were subsequently degraded into maleic acid/fumaric acid, trihydroxyethylene, acetic acid, oxalic acid, and other products. Furthermore, Zn-rich g-C3N4 demonstrated excellent stability and holds promising potential for applications in saline wastewater treatment.