In shear wave-based material mechanical characterization, the transmit/receiver transducer is generally in contact with the material through a coupling medium. In many applications, especially in biological tissue-related characterization, the application of the coupling medium and the contact method are not ideal, sometimes even unacceptable, due to contamination or stress response concerns. To avoid contact, we developed a 1 MHz air-coupled focused PZT transducer as a moderate pressure generator that could induce a shear wave in soft material and a fiber optic-based Sagnac system for the detection of the propagating shear wave. A calibration indicated that the fabricated air-coupled focused PZT transducer could generate pressure above 1 KPa within its focal range. This pressure is three to five times as much as the pressure generated by a 1 MHz air-coupled transducer currently available on the market. The integrated system was demonstrated through shear wave generation by the fabricated air-coupled PZT transducer and shear wave detection by the fiber optic Sagnac system in a nylon membrane. The results demonstrated the capability of the integrated system in non-contact material mechanical characterization, such as in material modulus measurement.
Read full abstract