In the retail stage of a food supply chain, food waste and stock-outs occur mainly due to inaccurate forecasting of sales which leads to incorrect ordering of products. The time series sales in food retail industry are characterized by high volatility and skewness, which vary by time. So, the interval forecasts are required by the retail companies to set appropriate inventory policy (reorder point or safety stock level). This paper attempts to develop a seasonal autoregressive integrated moving average with external variables (SARIMAX) model to forecast daily sales of a perishable food. The process of fitting a SARIMAX model in this study involves: (i) the development of Seasonal Autoregressive Integrated Moving Average (SARIMA) model and (ii) combining the SARIMA model and the demand influencing factors using linear regression. As the SARIMAX using multiple linear regression (SARIMA-MLR) model produces only mean forecast, the possibility of underestimation and overestimation is very high due to high service level, peak, and sparse sales in food retail industry. Therefore, a hybrid SARIMA and Quantile Regression (SARIMA-QR) is developed to construct high and low quantile predictions. Instead of extrapolating the quantiles from the mean point forecasts of SARIMA-MLR model based on the assumption of normality, the SARIMA-QR model directly forecasts the quantiles. The developed SARIMA-MLR and SARIMA-QR models are applied in modeling and forecasting of sales data, i.e., the daily sales of banana from a discount retail store in Lower Bavaria, Germany. The results show that the SARIMA-MLR and -QR models yield better forecasts at out-sample data when compared to seasonal naïve forecasting, traditional SARIMA, and multi-layered perceptron neural network (MLPNN) models. Unlike the SARIMA-MLR model, the SARIMA-QR model provides better prediction intervals and a deep insight into the effects of demand influencing factors for different quantiles.