The influence of sulfur fumigation processing on chemical profile, pharmacological activity and safety of Chinese herbs has attracted great attention. Panacis Quinquefolii Radix (PQR) was more widely used as edible and medicinal than Ginseng because of its tonifying effect and characteristic of not getting inflamed. The disadvantage of sulfur fumigated (SF) Ginseng has been reported, but the systematic study of SF-PQR is deficient and urgently needed. To systematically describe the influence of sulfur fumigation on chemical profile, characteristic products, immunoregulation and liver and kidney injury of PQR. ICP-MS and HPLC-DAD were used to detect 11 inorganic elements and 3 ginsenosides, respectively. Principal component analysis (PCA) was used to distinguish SF-PQR from non-sulfur fumigated (NSF)-PQR by combining the content changes of inorganic elements and ginsenosides. UPLC/Orbitrap-MS was applied to screen the characteristic products (m/z) after sulfur fumigation. For the effectiveness and safety, male KM mice were used to compare the immunomodulatory effects of NSF-PQR or SF-PQR under both healty and cyclophosphamide induced immunosuppressive conditions by net growth rate of body weight, thymus and spleen indices, serum IL-6, SOD, BUN, AST levels, and HE staining of liver and kidney. Sulfur fumigation processing significantly reduced the contents of ginsenosides Rb1, Re and Rg1 with the elevation of inorganic elements in 20 batches PQR. Based on the scatter distribution of PCA, SF-PQR and NSF-PQR can be distinguished. According to the Rt, Precursor ion (m/z) and Product ion (m/z) produced by UPLC/Orbit trap-MS, R1-SO3 (m/z, 1059.53), Re-SO3 (m/z, 1025.55), Rg1-SO3 (m/z, 878.47), Ro-SO3 (m/z, 1035.32), Rb1-SO3 (m/z, 1179.58), and Rk3-SO3 (m/z, 745.40) could be confirmed as important markers for identifying SF-PQR. The effect of SF-PQR on reversing immunosuppression induced by cyclophosphamide was significantly reduced (P < 0.05) evidenced by the inhibition of net growth rate of body weight, immune organ index, IL-6 level and SOD activity. For healthy mice, SF-PQR not only failed to maintain the normal indexes, but also reduced the indexes to lower levels. After 2 weeks of continuous gastric administration, the abnormal liver and kidney functions in healthy mice were damaged and manifested by the increasing of BUN and AST levels, which was consistent with hepatic lesion area and renal tubular injury observed by HE staining. Sulfur fumigation processing not only reduced the immunomodulatory effect of PQR, but also brought the hidden danger in liver and kidney injury. The sulfonated products provided in this paper can be applied for the identification of SF-PQR accurately.
Read full abstract