The present article is devoted to the issue of studying the patterns of displacement of superincumbent rock over panels of a mine obtained using advanced seismic technologies, allowing for the study of the boundaries of caving zones in the depths of rock mass. A seismic exploration has been performed in local areas of Zhomart mine responsible for the development of Zhaman-Aybat cuprous sandstone deposits in Central Kazakhstan at the stage of repeated mining with pulling of previously non-mined ore pillars and superincumbent rock caving. A 2D field seismic exploration has been accomplished, totaling to 8000-line m of seismic lines using seismic shot point. The survey depth varied from 455 m to 625 m. The state-of-the-art technologies of kinematic and dynamic analysis of wavefield have been widely used during data processing and interpretation targeted at identifying anomalies associated with the structural heterogeneity of the pays and rock mass, engaging modern algorithms and mathematical apparatuses of specialized geodata processing systems. The above effort resulted in new data regarding the location and morphology of the reflectors, characterizing geological heterogeneity of the section, zones of smooth rock displacement, and displacement of strata with significant disturbance of the rocks overlying mined-out productive pay. The potential of the application of modern 2D seismic exploration to studying an underworked zone with altered physical and mechanical properties located over an ore deposit has been assessed. The novelty and practical significance of the research lies in the determination of the boundaries of zones of displacement and superincumbent rock caving over the panels obtained using state-of-the-art technologies of seismic exploration. The deliverables may be used to improve the process of recognizing specific types of technogenic heterogeneities in the rock mass, impacting the efficiency and safety of subsurface ore mining, both for localization and mining monitoring.
Read full abstract