Porcine reproductive and respiratory syndrome virus (PRRSV) has been mainly responsible for the heavy economic losses in many swine-producing regions. Current vaccination strategies and antiviral drugs provide only limited protection. Consequently, there is a need to develop a new antiviral strategy. In this study, two recombinant adenoviruses expressing short-hairpin RNAs (shRNAs) directed against ORF1b of PRRSV S1 strain were constructed and the inhibition of PRRSV replication was determined. The results showed that pretreatment with these shRNAs delivered by recombinant adenovirus could induce a significant inhibition of viral RNA and protein level in Marc-145 cells infected with PRRSV S1 strains. One recombinant adenovirus (rAd-P2) was found to be also effective in inhibiting the replication of highly virulent PRRSV SY0608 strain in Marc-145 cells and porcine alveolar macrophages at both the protein and ORF1b mRNA level. The antiviral effect was dose-dependent and sustained for at least 96 h. Twenty 6-week old piglets were assigned to four groups each with five piglets. Groups 1 and 2 were inoculated intramuscularly with rAd-P2 and mock construct rAd-mP2 individually. After 24 h, groups 1, 2 and 3 were challenged intramuscularly with the SY0608 strain. Group 4 remained unchallenged but with PBS as mock. The results showed that the viral load of PRRSV in serum and lung tissue of swine was suppressed effectively by rAd-P2. The clinical signs and pathological lesions in the pigs inoculated with rAd-P2 were milder than those in rAd-mP2 negative and PRRSV control. These results indicated that shRNAs mediated by the adenovirus could inhibit PRRSV infection sufficiently in vitro as well as in vivo. RNAi mediated by recombinant adenovirus might be a potential new tool for controlling PRRSV infection. Of course, the protective efficiency of rAd-P2 should be made by using a large number of pigs in future.
Read full abstract