Two series of 1,4-dioxanes (4-11 and 12-19) were rationally designed and prepared to interact either with the phencyclidine (PCP) binding site of the N-methyl-d-aspartate (NMDA) receptor or with σ1 receptors, respectively. The biological profiles of the novel compounds were assessed using radioligand binding assays, and the compounds with the highest affinities were investigated for their functional activity. The results were in line with the available pharmacophore models and highlighted that the 1,4-dioxane scaffold is compatible with potent antagonist activity at NMDA receptor or high affinity for σ1 receptors. The primary amines 6b and 7 bearing a cyclohexyl and a phenyl ring or two phenyl rings in position 6, respectively, were the most potent noncompetitive antagonists at the NMDA receptor with IC50 values similar to those of the dissociative anesthetic (S)-(+)-ketamine. The 5,5-diphenyl substitution associated with a benzylaminomethyl moiety in position 2, as in 18, favored the interaction with σ1 receptors.
Read full abstract