A simple and robust prescaled clock recovery technique is analyzed and demonstrated. An electrical clock is extracted from an ultra-high-speed time-division multiplexed (TDM) RZ signal using a classic approach to clock recovery with a detector and a bandpass filter (BPF). A subharmonic tone at the base rate frequency is generated by inducing a small misalignment between adjacent pulses in the transmitted data. The subharmonic tone is recovered as a clock signal at the receiver. Numerical calculations clarify the effect of filter bandwidth, word length, and strength of timing shift on the received timing jitter. Furthermore, it is found numerically that correlated TDM channels will decrease the jitter of the recovered clock considerably. A clock recovery circuit is implemented into an experimental 40 Gb/s and 80 Gb/s optical TDM (O-TDM) system without any observed penalty. Measurements of the timing jitter of the recovered prescaled clock have been performed to verify the numerical results. A 10 GHz clock signal with subpicosecond root-mean-square timing jitter is recovered from a 40-Gb/s O-TDM sequence without a phase-locked loop (PLL) configuration. By using a PLL-configuration, the timing jitter is reduced further by 50%. A discussion on the influence on transmission capacity is performed in general and for nonlinear optical communication systems in particular.
Read full abstract