The influence of TiO2 band gap on structure and reactivity of the supported single ruthenium (Ru1) atom was studied by density functional theory calculations, utilizing Ru1/2L-TiO2 and Ru1/3L-TiO2 as model catalysts for CO2 methanation. The supports have band gaps of 2.39 eV and 1.48 eV, respectively. The band gap plays a significant role in electronic metal-support interactions (EMSIs) and the position of the d-band center of the Ru1 on the TiO2. The Ru1/3L-TiO2, the Ru1 catalyst supported on the 3L-TiO2 with a narrower band gap, shows enhanced EMSIs and a d-band center that is positioned farther from Fermi level, leading to lower charge density on the Ru1 and weaker adsorption of H2, CO2, and CO compared to the Ru1/2L-TiO2. CO2 methanation followed CO pathway, with the hydrogenation of CO* to HCO* identified as the rate-determining step on the Ru1/nL-TiO2. The Ru1 catalyst supported on TiO2 with a narrower band gap is more favorable kinetically and thermodynamically for CO2 methanation, despite the band gap not altering the reaction pathway. Enhanced hydrogen mobility and a pronounced promotional effect of hydrogen on CO adsorption, due to the narrower band gap support, are key factors facilitating the easier hydrogenation of CO* on the Ru1/3L-TiO2.
Read full abstract