Abstract
Abstract The TiMnSi2-type (space group Pbam) germanides ScTGe2 (T = Fe, Co, Ru, Rh) were synthesized from the elements by arc-melting. Single crystals were grown by annealing sequences of the arc-melted buttons in an induction furnace. The structures of ScFeGe2, ScRuGe2 and ScRhGe2 were refined from single-crystal X-ray diffraction data. In ScRuGe2, the ruthenium atoms have distorted octahedral germanium coordination (242–268 pm Ru–Ge). Three trans-face-sharing octahedra form a sub-unit which is condensed via common edges in c direction and connected via common corners with four adjacent blocks, forming a three-dimensional [RuGe2 type] substructure. The two crystallographically independent scandium sites have coordination numbers 15 (Sc1@Ge8Ru4Sc3) and 17 (Sc2@Ge7Ru6Sc4). Electronic band structure calculations for ScCoGe2 and ScRuGe2 show a net charge transfer from the scandium to the transition metal and germanium atoms, leading to a description with polyanionic networks Sc δ+[TGe2]δ−. The two crystallographically independent Sc sites are easily distinguishable by 45Sc magic-angle spinning (MAS)-NMR spectroscopy. Isotropic chemical shift values and nuclear electric quadrupolar interaction parameters were deduced from an analysis of the triple-quantum (TQ)-MAS NMR spectra. The electric field gradient parameters deduced from these experiments are in good agreement with quantum-chemical calculations using the Wien2k code. Likewise, the two crystallographically independent iron sites in ScFeGe2 could be discriminated in the 57Fe Mößbauer spectra through their isomer shifts and quadrupole splitting parameters: δ = 0.369(1) mm s−1 and ∆E Q = 0.232(2) mm s−1 for Fe1 and δ = 0.375(2) mm s−1 and ∆E Q = 0.435(4) mm s−1 for Fe2 (data at T = 78 K).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.