Creep tests were carried out on notched plate specimens of nickel-based superalloy GH4169 with different stress concentration coefficients. It was found that the duration of the first stage of the creep curve increases with the increase of stress concentration coefficient, while the fracture ductility decreases with the increase of stress concentration coefficient. To predict the life of notched plate specimens, four constitutive models were used to analyze the stress and strain of the notches. It was found that the average Von Mises equivalent stress (AVES) on the minimum notch section first decreases and then increases with the creep time, resulting in a minimum value. The minimum average Von Mises equivalent stress (MAVES) is considered as the characteristic stress of notched specimens in this paper. The creep life equation is fitted according to the results of creep tests of smooth specimens, and then the predicted life of notched specimens is obtained by substituting the minimum average Von Mises equivalent stress of notched specimens into the creep equation. The prediction results of the four constitutive models are within 2 times the dispersion band, and the three-stage model is within the 1.5 times dispersion band.
Read full abstract