The growing popularity of mobile and cloud computing raises new challenges related to energy efficiency. This work evaluates four various SQL and NoSQL database solutions in terms of energy efficiency. Namely, Cassandra, MongoDB, Redis, and MySQL are taken into consideration. This study measures energy efficiency of the chosen data storage solutions on a selected set of physical and virtual computing nodes by leveraging Intel RAPL (Running Average Power Limit) technology. Various database usage scenarios are considered in this evaluation including both local usage and remote offloading. Different workloads are benchmarked through the use of YCSB (Yahoo! Cloud Serving Benchmark) tool. Extensive experimental results show that (i) Redis and MongoDB are more efficient in energy consumption under most usage scenarios, (ii) remote offloading saves energy if the network latency is low and destination CPU is significantly more powerful, and (iii) computationally weaker CPUs may sometimes demonstrate higher energy efficiency in terms of J/ops. An energy efficiency measurement framework is proposed in order to evaluate and compare different database solutions based on the obtained experimental results.
Read full abstract