Chaotic transport of runaway electrons in a toroidal system in the presence of a weak small-scale magnetic turbulent field with a wide mode spectrum is studied. Using a fast running mapping, the radial profiles of turbulent diffusion coefficients are calculated. It is found that at large Kubo numbers the chaotic transport of the electrons is described by a fractal-like radial dependence of the diffusion coefficients with reduced or zero values near low-order rational drift surfaces which form transport barriers. The latter can be one of the main reasons of the improved confinement of runaway electrons in tokamaks. One can expect that this effect may lead to the formation of the nested beams of runaway electrons.