The objective of this study was to compare the effects of post-ruminal provision of Ca-butyrate (CaB) when delivered via abomasal dosing, and Ca-gluconate (CaG) when provided ruminally using a rumen protected form or using an unprotected form via abomasal dosing on short-chain fatty acid (SCFA) concentration throughout the GIT, nutrient digestibility, GIT barrier function, ruminal SCFA absorption, ruminal morphometrics, intestinal brush border enzyme activity, and blood parameters for beef heifers. Thirty-two beef heifers fitted with ruminal cannulas were used in a randomized complete block design and assigned to one of four treatments: 1) negative control (ruminal infusion of double-distilled water; CON); 2) abomasal infusion of CaB (AB; 0.0029% of BW); 3) abomasal infusion of CaG (AG; 0.0077% of BW); and 4) ruminal infusion of a hydrogenated fat-embedded CaG (RG; 0.0192% of BW) to provide ruminal protection. Excluding CON, treatments were designed to deliver the same amount of butyrate in the small intestine. Heifers were housed in individual pens and DMI was limited to 95% of voluntary intake to minimize a potential confounding effect of DMI on treatment responses. Total GIT barrier function was assessed on day 17 and SCFA disappearance was evaluated on day 21 using the temporarily isolated and washed reticulo-rumen technique. On day 28, heifers were slaughtered, and ruminal and colonic digesta were collected to assess SCFA concentration. Additionally, ruminal, jejunal, and colonic tissues were collected to assess SCFA fluxes and regional barrier function ex vivo using the Ussing chamber technique. For colonic digesta, both AB and CaG treatments reduced the proportion of acetate (P < 0.05) and increased the proportion on propionate (P < 0.05) compared to CON. Relative to CON, AB but not CaG treatments increased in vivo ruminal disappearance of total SCFA (P = 0.01), acetate (P = 0.03), propionate (P = 0.01), and butyrate (P > 0.01). Treatments did not affect (P ≥ 0.10) acetate and butyrate fluxes in the ruminal and colonic tissues when measured ex vivo; however, when compared with CON, AB tended to decrease (P = 0.09) mannitol flux across ruminal tissue. In addition, mannitol flux was affected (P < 0.01) by region, with greater mannitol flux across the jejunum than rumen and colon. We conclude that while both abomasal infusion of CaB and CaG affect the molar proportion of acetate and propionate in the colon, only abomasal CaB stimulated ruminal SCFA absorption for growing beef heifers.