Analogical transfer is the ability to transfer knowledge despite significant changes in the surface features of a problem. In categorization, analogical transfer occurs if a classification strategy learned with one set of stimuli can be transferred to a set of novel, perceptually distinct stimuli. Three experiments investigated analogical transfer in rule-based and information-integration categorization tasks. In rule-based tasks, the optimal strategy is easy to describe verbally, whereas in information-integration tasks, accuracy is maximized only if information from two or more stimulus dimensions is integrated in a way that is difficult or impossible to describe verbally. In all three experiments, analogical transfer was nearly perfect in the rule-based conditions, but no evidence for analogical transfer was found in the information-integration conditions. These results were predicted a priori by the COVIS theory of categorization.