This study focuses on the Structure, System, and Components (SSC) of G.A Siwabessy Multipurpose Reactor (RSG-GAS), emphasizing the integration of reliability improvement within asset management optimization. The research aims to derive Maintenance Priority Index (MPI) values, contributing to system reliability ratings, crucial for assessing component functionality and estimating Remaining Useful Life (RUL) The methodology involves measuring critical aspects of system quality, safety, and cost. The MPI value, representing 10 % of SSC critical components, guides subsequent reliability calculations. Utilizing failure data from RSG-GAS components (2010–2018) and reactor core configurations (70th-96th core), SSC reliability is simulated using Monte Carlo simulation, with RUL based on real data. High MPI values are identified for critical components such as KBE01/AP01-02_B in the primary purification system, JE-01/AP01-02_A in the primary cooling system, and PA01-02/CR001_A in the secondary cooling system. Maintenance intervals of 100 days are recommended for KBE01/AP 01–02_B and JE-01/AP01-02_A, exceeding 50 % reliability, while PA01-02/CR001_A maintenance can extend to 75 days. Monte Carlo simulation results, with 1000 samples, closely align with real reliability values. The RUL result projects operational lifetimes of 225.6, 221.4, and 171.5 days for KBE01/AP 01–02_B, JE-01/AP01-02_A, and PA01-02/CR001_A components. This study improves asset management, offering practical insights for critical safety system component maintenance planning.