The experimental research was focused on the investigation of valuable material from spent Ni-MH type AA batteries, namely the metal grid anodes and the black mass material (anode and cathode powder). The materials of interest were analyzed by X-ray fluorescence spectroscopy (XRF), ICP-OES (inductively coupled plasma optical emission spectrometry), optical microscopy, scanning electron microscopy (SEM), energy-dispersive X-ray analysis (EDX), electron backscatter diffraction (EBSD), and X-ray diffraction (XRD). The analyzed grids have a high Fe content, but some of them correspond to the Invar alloy with approx. 40% Ni. In the black mass material, round particles and large aggregations were observed by SEM analysis, showing a high degree of degradation. The XRD analysis reveals the presence of only three compounds or phases that crystallize in the hexagonal system: La0.52Ce0.33Pr0.04Nd0.11Co0.6Ni4.4, Ni(OH)2, and La5Ni19. The obtained results provide useful and interesting information that can be used for further research in the recycling and economic assessment of metals from spent Ni-MH batteries.