Whereas streamwise effective slope ( $ES_{x}$ ) is accepted as a key topographical parameter in the context of rough-wall turbulent flows, the significance of its spanwise counterpart ( $ES_{y}$ ) remains largely unexplored. Here, the response of turbulent channel flow over irregular, three-dimensional rough walls with systematically varied values of $ES_{y}$ is studied using direct numerical simulation. All simulations were performed at a fixed friction Reynolds number 395, corresponding to a viscous-scaled roughness height $k^{+}\approx 65.8$ (where $k$ is the mean peak-to-valley height). A surface generation algorithm is used to synthesise a set of ten irregular surfaces with specified $ES_{y}$ for three different values of $ES_{x}$ . All surfaces share a common mean peak-to-valley height and are near-Gaussian, which allows this study to focus on the impact of varying $ES_{y}$ , since roughness amplitude, skewness and $ES_{x}$ can be eliminated simultaneously as parameters. Based on an analysis of first- and second-order velocity statistics, as well as turbulence co-spectra and the fractional contribution of pressure and viscous drag, the study shows that $ES_{y}$ can strongly affect the roughness drag penalty – particularly for low- $ES_{x}$ surfaces. A secondary observation is that particular low- $ES_{y}$ surfaces in this study can lead to diminished levels of outer-layer similarity in both mean flow and turbulence statistics, which is attributed to insufficient scale separation between the outer length scale and the in-plane spanwise roughness wavelength.
Read full abstract