This study investigates the pool boiling heat transfer of water over cylindrical heating tubes for different orientations and surface roughness of the tubes. First, two orientations of a smooth heating tube, horizontal and vertical, were used in the boiling chamber. For a given heat flux, the heat transfer coefficient achieved with the horizontal tube was always higher than that for the vertical tube. To investigate the influence of surface roughness, a rough heating tube with a fully rough outer surface was developed through a metal etching process. Under the same range of wall superheat, the rough tube enhanced the heat transfer rate significantly compared to the smooth tube. Finally, a modified heating tube (MHT) was developed by axially roughening half of the surface of an originally smooth tube. The orientation angle of the rough surface of this MHT was varied from 0° (horizontal-upward) to 180° (horizontal-downward) in the chamber. The heat flux increased significantly with the increase of orientation angles from 0° to 90° (the maximum of 80 kW/m2 at 90°), whereas the same decreased as the orientation angle is further increased from 90° to 180°. Results revealed that the bubble dynamics over the heating tubes play a vital role in pool boiling performance.
Read full abstract