Affected by multi-field coupling factors, the vibration response of rotating machinery similar to the hydro-generator unit often exhibits strong time-varying frequency components, which makes rotor fault detection more challenging. The fusion analysis of the vibration signals of multiple bearing sections of the rotor has been proved to be a very effective method for rotor vibration fault diagnosis. However, how to more accurately and synchronously extract the instantaneous features of rotor non-stationary vibration signals associated with multiple sections has been unresolved. To this end, a framework for multivariate time-varying complex signal decomposition of the rotor-bearing system (RBS) is proposed, namely multivariate complex nonlinear chirp mode decomposition. First, the decomposition of multivariate time-varying complex signals is realized by two-stage processing. Second, instantaneous orbit features (IOFs) are obtained through the proposed framework. Finally, a three-dimensional instantaneous orbit map reflecting the time-varying process is constructed through the IOFs. The framework not only realizes the decomposition of the multi-channel time-varying complex signals of the rotor but also simultaneously extracts the instantaneous features of the multi-channel signals. In addition, it also realizes the description of the instantaneous vibration state of the RBS in the non-stationary process (such as startup and shutdown). Simulation experiments show that the framework is superior to other multi-channel signal processing methods in processing time-varying complex signals. The results based on field-measured signals show that the framework can guide the real-time analysis of the signals generated by rotating machinery, which improves the intuition of condition monitoring.
Read full abstract