Manual muscle tests (MMTs) are used in clinical settings to evaluate the function and strength (force-generating capacity) of a specific muscle in a position at which the muscle is believed to be most isolated from other synergists and antagonists. Despite frequent use of MMTs, few electromyographic evaluations exist to confirm the ability of MMTs to isolate rotator cuff muscles. This study examined rotator cuff isolation during 29 shoulder muscle force tests (9 clinical and 20 generic tests). An experimental design was used in this study. Electromyographic data were recorded from 4 rotator cuff muscles and 10 additional shoulder muscles of 12 male participants. Maximal isolation ratios (mean specific rotator cuff muscle activation to mean activation of the other 13 recorded muscles) defined which of these tests most isolated the rotator cuff muscles. Three rotator cuff muscles were maximally isolated (obtained highest isolation ratios) within their respective clinical test groups (lateral rotator test group for the infraspinatus and teres minor muscles and abduction test group for the supraspinatus muscle). The subscapularis muscle was maximally isolated equally as effectively within the generic ulnar force and clinical medial rotation groups. Similarly, the supraspinatus and teres minor muscles were isolated equally as effectively in some generic test groups as they were in their respective clinical test groups. Postural artifact in the wire electrodes caused exclusion of some channels from calculations. The grouping of muscle force tests based on test criteria (clinical or generic tests and muscle action) may have influenced which groups most isolated the muscle of interest. The results confirmed the appropriateness of 9 commonly used clinical tests for isolating rotator cuff muscles, but suggested that several other muscle force tests were equally appropriate for isolating these muscles.