Special rolling is also called rotary forming process, which is an advanced manufacture technology of making workpiece generate deformation in a rotary state by continuous local plastic forming. Disk rotary parts with outer stepped cross-section, such as wheels, flanges, valves and so on, are widely used in engineering machinery. Traditionally, this kind of part is manufactured by forging and cutting, which consumes a lot of energy and materials especially to the large size part. In this paper, a new specific rolling technique called three rolls cross rolling is first presented to produce this kind of part, and the principle and characteristics of this technique are described in detail. Then, base on the principle of the three rolls cross rolling, a 3D coupled thermo-mechanical FE model is developed under ABAQUS software environment. As a result, under the simulation and analyses of a real example, the feasibility of this technique is verified, and the evolutional laws of the strain, temperature and rolling force and power parameters during the process are investigated as well. The obtained results provide valuable guidelines for the further investigation on the forming characteristic of the three rolls cross rolling technique.