A biotransformation pair consisting of vinblastine: vincristine present in the Catharanthus roseus plant is of immense pharmacological significance. In this study, we successfully transformed vinblastine into vincristine outside the plant using Pseudomonas aeruginosa 8485 and Pseudomonas fluorescens 2421 and evaluated the antiangiogenic potential of thus produced vincristine through the CAM assay. The toxicity assay showed that both Pseudomonas spp. can tolerate varying concentrations (25–100 µl of 1 mg/ml) of vinblastine. The biotransformation was performed in a liquid nutrient broth medium containing vinblastine (25–100 µl), and Pseudomonas spp. inoculums (50–150 µl) by incubating at 30 °C and 37 °C, respectively for 8 days. The process was optimized for substrate and culture concentrations, pH, temperature, and rotation speed (rpm) for the highest conversion. Analysis using LC–MS/MS confirmed the presence of vincristine as a product of the vinblastine biotransformation by two Pseudomonas spp. P. fluorescens 2421 showed a faster conversion rate with 95% of vinblastine transformed within 24 h than P. aeruginosa 8485, which demonstrated a conversion rate of 92% on the 8th day. From LC–MS/MS analysis, the optimal conditions for the reaction were determined as vinblastine (25 µl), microbial inoculums (150 µl or 200 × 106 and 210 × 106 CFU/ml), pH 7.4, rotation speed of 180 rpm, and temperatures of 30 °C and 37 °C with incubation time of 8 days. The vincristine produced exhibited potent antiangiogenic activity in the CAM assay reducing the thickness and branching of blood vessels in a dose-dependent manner. The study concludes that both Pseudomonas spp. showed promise for vincristine production from vinblastine, without compromising its antiangiogenic properties.
Read full abstract