Jatropha curcas is being promoted as a new bioenergy crop in tropical and subtropical regions due to its high amount of seed oil and its potential capacity to grow on marginal land for biofuel production. However, the productivity of the plant is constrained by the unfavorable flowering time and inflorescence architecture, which render harvesting of seeds time-consuming and labor-intensive. These flowering-related traits have limited further widespread cultivation of Jatropha. We identified a Jatropha curcas homolog of Flowering locus T (JcFT) and demonstrated its function by genetic complementation of the Arabidopsis ft mutant. The JcFT expression level was found to be remarkably correlated with leaf age. Overexpression of JcFT in Jatropha reduced flowering time and altered plant architecture by producing more branches. Grafting experiments suggested that the earlyflowering and alteration of plant architecture traits were graft-transmissible. We also showed that the FT-overexpressing transgenic Jatropha can be used as a root stock for grafting of scions derived from other Jatropha. We generated early flowering transgenic Jatropha plants that accumulate higher levels of the florigen FT. Not only early flowering but also plant growth was affected in JcFT overexpression lines. More seeds can be produced in a shorter time frame by shortening the flowering time in Jatropha, suggesting the possibility to increase seed yield by manipulating the flowering time.