For an effective Cartier divisor D on a scheme X we may form an nth\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${n}^{\ ext {th}}$$\\end{document} root stack. Its derived category is known to have a semiorthogonal decomposition with components given by D and X. We show that this decomposition is 2n\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$2n$$\\end{document}-periodic. For n=2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n=2$$\\end{document} this gives a purely triangulated proof of the existence of a known spherical functor, namely the pushforward along the embedding of D. For n>2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$n > 2$$\\end{document} we find a higher spherical functor in the sense of recent work of Dyckerhoff et al. (N-spherical functors and categorification of Euler’s continuants. arXiv:2306.13350, 2023). We use a realization of the root stack construction as a variation of GIT, which may be of independent interest.
Read full abstract