Abstract

We describe the moduli stack of Gushel–Mukai varieties as a global quotient stack and its coarse moduli space as the corresponding GIT quotient. The construction is based on a comprehensive study of the relation between this stack and the stack of so-called Lagrangian data defined in our previous works; roughly speaking, we show that the former is a generalized root stack of the latter. As an application, we define the period map for Gushel–Mukai varieties and construct some complete nonisotrivial families of smooth Gushel–Mukai varieties. In an appendix, we describe a generalization of the root stack construction used in our approach to the moduli stack.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.