Lytic polysaccharide monooxygenases (LPMOs) are copper metalloenzymes which cleave polysaccharides oxidatively and are important in pathogen biology, carbon cycling and biotechnology. The Lentinus similis family AA9 isoform A (LsAA9_A) has been extensively studied as a model system because its activity towards smaller soluble saccharide substrates has allowed detailed structural characterization of its interaction with a variety of substrates by X-ray crystallography at high resolution. Here, the joint X-ray/neutron room-temperature crystallographic structure of carbohydrate-free LsAA9_A in the copper(II) resting state refined against X-ray and neutron data at 2.1 and 2.8 Å resolution, respectively, is presented. The results provide an experimental determination of the protonation states of the copper(II)-coordinating residues and second-shell residues in LsAA9_A, paving the way for future neutron crystallographic studies of LPMO-carbohydrate complexes.
Read full abstract