The recruitment of the protein spleen tyrosine kinase (Syk) to membrane-bound immune receptors is an essential step in initiating an immune response mediated through the activated receptors. Syk recognizes intracellular phosphorylated regions of membrane receptors known as immunoreceptor tyrosine-based activation motifs (ITAMs) defined by a sequence with two tyrosine (Y) amino acids separated by a certain spacing of six to eight residues: YXX(I/L)X6-8YXX(I/L). Syk with doubly phosphorylated ITAM is high-affinity and negatively regulated when Syk itself becomes phosphorylated. While the role of Syk in immune signaling is well characterized, recent information affords new functionality to Syk related to cytoplasmic processes, including the clearance of stress granules and P-bodies, both formed by liquid-liquid phase separation. Little to nothing is known about the molecular interactions involving Syk in these cytoplasmic processes. Given the essential role of receptor ITAMs in recruiting and localizing Syk for immune signaling, we explore here the possibility of a similar localization mechanism occurring for cytoplasmic processes by searching sequences of proteins related to Syk cytoplasmic function for regions that resemble receptor ITAMs. Protein sequence databases were generated from a Syk-dependent phosphoproteome and from genes related to P-bodies. A search of these databases for ITAM-like sequences yielded 102 unique hits, and 33 of these were synthesized and tested experimentally for binding to Syk tandem SH2 domains. The equilibrium dissociation constants were 0.1-50 μM for 28 peptides, and binding was negatively regulated by phosphorylation for many peptides. These results identify cytoplasmic proteins with potential for regulating the localization of Syk in a phosphorylation-dependent manner to nonmembrane cellular regions.
Read full abstract