The idea that sleep might be involved in brain plasticity has been investigated for many years through a large number of animal and human studies, but evidence remains fragmentary. Large amounts of sleep in early life suggest that sleep may play a role in brain maturation. In particular, the influence of sleep in developing the visual system has been highlighted. The current data suggest that both Rapid Eye Movement (REM) and non-REM sleep states would be important for brain development. Such findings stress the need for optimal paediatric sleep management. In the adult brain, the role of sleep in learning and memory is emphasized by studies at behavioural, systems, cellular and molecular levels. First, sleep amounts are reported to increase following a learning task and sleep deprivation impairs task acquisition and consolidation. At the systems level, neurophysiological studies suggest possible mechanisms for the consolidation of memory traces. These imply both thalamocortical and hippocampo-neocortical networks. Similarly, neuroimaging techniques demonstrated the experience-dependent changes in cerebral activity during sleep. Finally, recent works show the modulation during sleep of cerebral protein synthesis and expression of genes involved in neuronal plasticity.