Abstract Irrigation water extracted from the Yellow River plays a key role in water resource management in the Yinchuan Plain (YCP), arid Northwest China. Investigating the soluble matters (ion and gas) of groundwater provides information to explain the unconfined shallow aquifer recharge and groundwater mineralization processes after long-term flood irrigation activity. Environmental tracing with the elements, 2H, 18O, 3H, and CFCs, combining geochemistry using major ions and selected trace elements, was conducted for 43 water samples from September to October 2019 in the YCP. Evaporite and silicate weathering dominate the shallow unconfined groundwater geochemical compositions. Water–rock interactions control the mineralization characteristics regularly along the groundwater flow paths from the southwest toward the northeast. Stable isotopes suggest that Yellow River water and precipitation in winter and/or from Helan Mountainous area are the main recharge sources. The shallow unconfined aquifer mixed young (post-1940) and old (pre-1940) water with young water ratios from 53.1 to 73.5% inferred from the CFC concentrations and 3H activities. Water reinfiltrations extracted from the Yellow River and from the old groundwater are confirmed. Lateral flow recharge for the shallow unconfined aquifer is less indistinctive than that from the water re-infiltration in the plain areas.