In this study, we investigated the mechanism of alveolar macrophage activation by systemic administration of SSG, a soluble highly branched (1→3)- β- d-glucan obtained from a fungus Sclerotinia sclerotiorum IFO 9395. Multiple i.v. administration (10 mg/kg; once daily for 10 consecutive days) of SSG enhanced some functions of alveolar macrophages, such as lysosomal enzyme activity and nitric oxide secretion, on day 1 after the last administration, and it also elevated the concentrations of serum protein, interferon γ and SSG in bronchoalveolar lavage fluid on the same day. On the in vitro assay system, stimulation by SSG alone (500 μg/ml) slightly augmented the lysosomal enzyme activity of alveolar macrophages, but it had no effect on nitric oxide production of cells. Stimulation by serum (1 or 10% mouse serum) or serum components, such as fibronectin (25 μg/ml) and albumin (500 μg/ml), alone strongly augmented only the lysosomal enzyme activity of alveolar macrophages, but it had no effect on nitric oxide secretion from cells, and no synergism or additive-like effect was observed between serum components and SSG. In contrast, stimulation by crude lymphokine (5%) or recombinant murine interferon γ (100 U/ml) alone did not induce augmentation of lysosomal enzyme activity and nitric oxide production of alveolar macrophages in vitro, but when cells were incubated together with crude lymphokine or recombinant murine interferon γ and SSG (500 μg/ml), a significant combined effect was observed on both functions of alveolar macrophages. In addition, pretreatment of crude lymphokine or recombinant murine interferon γ enhanced the expression of β- d-glucan specific binding sites on the alveolar macrophage surface in vitro though pretreatment by serum components had no effect. Based on these findings, the enhancement of alveolar macrophage functions by systemic administration of SSG appears to be mediated, at least in part, by both the simple effect of serum components including fibronectin and albumin leaked from pulmonary peripheral blood into the alveoli and the synergistic effect between lymphokines released from activated pulmonary T cells and SSG itself entering the alveoli after SSG injection via the priming effect of lymphokines which enhances the expression of β- d-glucan specific binding sites on the alveolar macrophage surface.
Read full abstract