Salicylic acid (SA) is a bioregulator well-known for mitigating salinity damage in plants. However, no studies have examined the interaction between SA and salinity in Dizygostemon riparius, a species rich in bioactive molecules. Therefore, we aimed to evaluate the effect of SA application on Dizygostemon riparius under different salinity levels. A completely randomized experiment was conducted in a 2 × 3 factorial design (two SA concentrations of 0 and 100 µM and three salinity concentrations of 0, 200, and 400 mM NaCl) with five replicates. At 400 mM NaCl, leaf temperature increased by 11%, while relative water content and total soluble carbohydrates decreased by 30% and 35%, respectively, leading to reduced biomass accumulation. Notably, the SA application mitigated these effects by restoring relative water content under 400 mM NaCl and improving carboxylation efficiency and intrinsic water-use efficiency under 200 mM NaCl. Additionally, dry biomass was maintained under both 200 and 400 mM NaCl with SA treatment. These findings suggest that SA has a promising potential to alleviate salt stress in Dizygostemon riparius. Our results could inform cultivation practices, opening new perspectives on the use of SA as an attenuator of salinity stress.
Read full abstract