Prostate cancer (PCa) is one of the leading causes of deaths in America. The major cause of mortality can be attributed to metastasis. Cancer metastasis involves sequential and interrelated events. miRNAs and epithelial-mesenchymal transition (EMT) are implicated in this process. miR-195 is downregulated in many human cancers. However, the roles of miR-195 in PCa metastasis and EMT remain unclear. In this study, data from Memorial Sloan Kettering Cancer Center (MSKCC) prostate cancer database were re-analysed to detect miR-195 expression and its roles in PCa. miR-195 was then overexpressed in castration-resistant PCa cell lines, DU-145 and PC-3. The role of miR-195 in migration and invasion in vitro was also investigated, and common markers in EMT were evaluated through Western blot analysis. A luciferase reporter assay was conducted to confirm the target gene of miR-195; were validated in PCa cells. In MSKCC data re-analyses, miR-195 was poorly expressed in metastatic PCa; miR-195 could be used to diagnose metastatic PCa by measuring the corresponding expression. Area under the receiver operating characteristic curve (AUC-ROC) was 0.705 (P = 0.017). Low miR-195 expression was characterised with a shorter relapse-free survival (RFS) time. miR-195 overexpression suppressed cell migration, invasion and EMT. Fibroblast growth factor 2 (FGF2) was confirmed as a direct target of miR-195. FGF2 knockdown also suppressed migration, invasion and EMT; by contrast, increased FGF2 partially reversed the suppressive effect of miR-195. And data from ONCOMINE prostate cancer database showed that PCa patients with high FGF2 expression showed shorter RFS time (P = 0.046). Overall, this study demonstrated that miR-195 suppressed PCa cell metastasis by downregulating FGF2. miR-195 restoration may be considered as a new therapeutic method to treat metastatic PCa.