The role of methane (CH4) in the 21st century presents a critical dilemma. Its abundance and clean-burning nature make it a promising energy source, while its potent greenhouse effect threatens climate stability. Despite its potent greenhouse gas (GHG) nature, CH4 remains a crucial energy resource. However, advancements in CH4 capture, utilization, and emissions mitigation are rapidly evolving, necessitating a critical assessment of the advances, their potential, and challenges. This study aims to comprehensively evaluate the current state of the art in these advancements, particularly focusing on the emissions trends, with corresponding global warming potentials of projected CH4 emissions, and a discussion on the advances that have been made towards reducing the impacts of CH4 emissions. The areas of these advances include measurement, computational, numerical modeling, and simulation studies for CH4, emerging technologies for CH4 production, management and control, the nexus of CH4 –X, and case study applications in countries. This study reports on these advances, which involves a technical review of studies, mainly from the last decade, discussing the technical feasibility, economic viability, and environmental impact of these advancements. Our trend analysis reveals that even though the share of CH4 in the GHG mix has been around 19% compared with carbon dioxide (CO2), still, CH4 reduction would need to be highly subsidized because of the high global warming potential it has, compared with CO2. We conclude that while significant progress has been made, further research and development are essential to optimize the performance, scalability, and affordability of these advancements. Additionally, robust policy frameworks and international collaborations are crucial to ensure widespread adoption and maximize the potential that comes with the advancements in the mitigation of the impact of CH4 emission. This study contributes to the ongoing dialogue on balancing the potentials of CH4 with its environmental footprint, paving the way for a future where this versatile resource can be utilized sustainably.
Read full abstract