Emulsification is a feared and common complication of the use of silicone oil (SO) as tamponade fluid after vitrectomy as it potentially associated with significant risks to ocular health, including elevated intraocular pressure (IOP), glaucoma, corneal and retinal changes. The aim of this study was to investigate the role and interplay of physical factors on the formation of SO emulsion. Experiments were performed in a model of the vitreous chamber with a realistic shape, filled with SO and an aqueous solution containing different concentrations of albumin, an endogenous protein known to modify the interfacial properties between SO and aqueous solutions. The model was subjected to harmonic and saccadic rotations and kept at body temperature. Results indicated that no emulsions were detected in the absence of albumin in the aqueous solution, while the presence of the protein facilitated emulsion formation, acting as a surfactant. Mechanical energy from eye movements was also found to be a key mechanism to produce emulsification, with higher mechanical energy provided to the system leading to smaller droplet sizes. The emulsions formed were stable over extended times. This study highlights the complex interplay of factors influencing SO emulsification in the vitreous chamber. A better understanding of the mechanisms underlying SO emulsification is crucial for developing strategies to mitigate SO emulsion and the related complications.
Read full abstract