Viewed from the standpoint of chemical reactivity, CO2 would appear to be a more appropriate substrate than bicarbonate for carboxylation reactions, since it would be more susceptible to nucleophilic attack. However, in aqueous medium, the equilibrium between dissolved CO2 and bicarbonate is such that, at physiological pH, bicarbonate is present at some 20-fold higher concentration. Furthermore, bicarbonate probably has greater potential for binding to enzymes since it is a more polar molecule than CO2. It is perhaps not surprising then, that although the product of decarboxylation reactions in catabolic processes is CO2, several carboxylating enzymes have evolved to employ bicarbonate, not CO2, as their substrate. The carboxylating enzymes in animals, which are known to bind bicarbonate as substrate, are the biotin-dependent carboxylases and the carbamoyl phosphate synthetase isozymes. These enzymes bind bicarbonate, but then generally convert it either to CO2 (biotin-dependent carboxylases) or to an activated form of CO2 (carbamoyl phosphate synthetases). Carbonic anhydrase (CA) is perhaps alone among enzymes in being able to bind either of these substrates. (For reviews see Rubio, 1986; Knowles, 1989 and O’Leary, 1992).