Abstract Myeloid-derived suppressor cells (MDSCs) are induced in cancer and fibrosis, while absent in healthy tissues. The expansions of MDSC are correlated with disease severity and lung function deterioration in the latter. B7H3 induced in lung fibrosis causes the recruitment of MDSCs. However, the mechanism underlying the biogenesis of MDSCs is unclear. To study if B7H3-induced expansion of MDSCs is due to inhibition of the differentiation of myeloid progenitors, the role of B7H3 in the regulation of BM-derived myeloid cells was studied. The results showed that B7H3 deficiency in BM LysM+ myeloid cells significantly increased differentiation to mature myeloid cells. In contrast, treatment with B7H3 inhibited such differentiation. In mice, LysM+ cells-specific B7H3 deficiency induced mature myeloid cell differentiation, but significantly decreased immature MDSCs, which was associated with less immunosuppressive capability. Lack of B7H3 caused a significant reduction of MDSC marker genes characteristic. Furthermore, the delayed B7H3 antibody treatment or by ablating of its secretion from collagen-expressing cells reduced BM-derived MDSCs and PD1-expressing progenitors but increased mature myeloid cell number, which was accompanied by attenuated lung fibrosis. These findings suggested that activated fibroblasts in lung fibrosis may be a key source of soluble B7H3 essential for the signal to BM skewing myeloid lineage fate and induced biogenesis of MDSC
Read full abstract