Abstract Chronic myeloid leukemia (CML) is the first cancer that was shown to originate from a genetic abnormality - the Philadelphia chromosome translocation, and production of its constitutively active protein tyrosine kinase product, BCR-ABL. The disease progresses slowly from chronic phase to accelerated phase, and later transforms to blast crisis (BC) stage. Cancer stem cells (CSCs) are a subset of tumor cells that have acquired certain treatment-resistant stem cell properties. High levels of RNA editing are associated with a primitive transcriptional program typical of human embryonic stem cells, and RNA editing plays an important role in both embryonic hematopoietic cell fate determination and in maintenance of normal hematopoiesis. Human RNA editing occurs primarily in secondary structures created by Alu retroelements and is carried out by enzymes such as the adenosine deaminase acting on RNA (ADAR) family. Among these, ADAR1 was also recently shown to be required for normal hematopoiesis by suppressing interferon-induced apoptosis. Our research focuses on dissecting the role of ADAR-mediated RNA editing in normal human hematopoietic progenitor cell development compared with malignant editing programs that may be activated in leukemia stem cells (LSC) during the progression of human CML. Our data demonstrates that BC LSC harbor increased levels of the interferon-responsive ADAR1 p150 isoform compared with chronic phase (CP) progenitors and normal cord blood progenitors. Expression of this isoform also exhibits a positive correlation with BCR-ABL expression levels - an effect which is specific to BC progenitors, suggesting that ADAR1 expression correlates with disease progression from CP to BC. In vitro hematopoietic progenitor assays with normal cord blood progenitors and CP samples transduced with lentiviral vectors overexpressing human ADAR1 reveals a significant shift in cell differentiation fate towards granulocyte-macrophage progenitor (GMP) colonies, which has been shown to be the initiating LSC population in CML Correspondingly, a progression towards erythroid lineage was observed in BC CML LSC transduced with lentiviral vectors expressing shRNA targeting ADAR1. Further qRT-PCR analyses revealed that the mechanism through which ADAR1 drives LSC and HSC differentiation towards myelopoiesis involves regulation of PU.1, which in turn inhibits GATA1 expression. Moreover, in vivo studies in a robust humanized CML mouse model showed a significant decrease in LSC serial transplantation potential of lentiviral shADAR1-transduced BC progenitors transplanted into neonatal RAG2-/-γc-/- mice. Together, these data support a crucial role for ADAR1 in cell fate determination and self-renewal potential of hematopoietic stem cells in both normal human progenitors and in malignant LSC that drive disease progression and therapeutic resistance. Citation Format: {Authors}. {Abstract title} [abstract]. In: Proceedings of the 103rd Annual Meeting of the American Association for Cancer Research; 2012 Mar 31-Apr 4; Chicago, IL. Philadelphia (PA): AACR; Cancer Res 2012;72(8 Suppl):Abstract nr 5217. doi:1538-7445.AM2012-5217