Bone is a unique organ crucial for locomotion, mineral metabolism, and hematopoiesis. It maintains homeostasis through a balance between bone formation by osteoblasts and bone resorption by osteoclasts, which is regulated by the basic multicellular unit (BMU). Abnormal bone metabolism arises from an imbalance in the BMU. Osteoclasts, derived from the monocyte-macrophage lineage, are regulated by the RANKL-RANK-OPG system, which is a key factor in osteoclast differentiation. RANKL activates osteoclasts through its receptor RANK, while OPG acts as a decoy receptor that inhibits RANKL. In trabecular bone, high turnover involves rapid bone formation and resorption, influenced by conditions such as malignancy and inflammatory cytokines that increase RANKL expression. Cortical bone remodeling, regulated by aged osteocytes expressing RANKL, is less understood, despite ongoing research into how Rett syndrome, characterized by MeCP2 abnormalities, affects RANKL expression. Balancing trabecular and cortical bone involves mechanisms that preserve cortical bone, despite overall bone mass reduction due to aging or oxidative stress. Research into genes like sFRP4, which modulates bone mass, highlights the complex regulation by BMUs. The roles of the RANKL-RANK-OPG system extend beyond bone, affecting processes such as aortic valve formation and temperature regulation, which highlight the interconnected nature of biological research.
Read full abstract