Tumor necrosis factor α stimulated gene 6 (TSG-6) protein is an inflammation-inducing protein. In recent years, TSG-6 protein has been found to play an anti-inflammatory and anti-fibrosis role in a variety of disease models. The level of TSG-6 protein in circulating blood is considered to be a biological indicator for the evaluation of acute coronary syndrome, severe infection, and other diseases, and it is closely related to the prognosis. The clinical correlation between TSG-6 protein and dilated cardiomyopathy (DCM) patients with heart failure has not been reported. This study aims to investigate the changes of plasma TSG-6 protein levels in cardiomyopathy patients with heart failure and its correlation with cardiac function, myocardial fibrosis, and prognosis. Based on the prospective studies, a number of 90 DCM patients with heart failure were selected as a DCM heart failure group from Dec.1, 2019 to Sept.1, 2020. Thirty-nine healthy people were served as a control group. Plasma TSG-6, Collagen Ⅰ, Collagen III, and α-smooth muscle actin (α-SMA) were measured with ELISA test. Echocardiography was used to evaluate the structure and function of the heart. DCM patients with heart failure were followed up for 3 months. The patients were assigned into 2 groups according to whether they had major adverse cardiovascular events (MACE). The general clinical data, plasma TSG-6, Collagen Ⅰ, Collagen III, and α-SMA protein levels were compared between the control group and the DCM heart failure group. At the same time, the correlation between plasma TSG-6 protein level and cardiac function grade, myocardial fibrosis or prognosis of patients in the DCM heart failure group was analyzed. Compared with the control group, the heart rate, TSG-6, Collagen Ⅰ, Collage III, α-SMA, hemoglobin, atrial natriuretic peptide (NT-proBNP), hypersensitive C-reactive protein, aspartate aminotransferase, serum creatinine, lactate dehydrogenase, and left ventricular end diastolic diameter (LVEDD) increased significantly (all P<0.001). High-density lipoprotein, left ventricular short axis shortening rate (LVFS), and left ventricular ejection fraction (LVEF) decreased significantly in the DCM heart failure group (all P<0.001). Plasma levels of TSG-6 were positively correlated with NT-proBNP, Collagen Ⅰ, Collagen III, α-SMA, and LVEDD (all P<0.001), while they were negatively correlated with LVFS and LVEF (all P<0.001). With the increase of NYHA heart function classification, plasma levels of TSG-6, Collagen Ⅰ, Collagen III, and α-SMA increased significantly (all P<0.001). The increases in plasma levels of NT-proBNP and TSG-6 was associated with poor prognosis in DCM patients with heart failure (all P<0.05). The sensitivity and specificity of plasma NT-proBNP for evaluating the prognosis of DCM heart failure were 76.2% and 68.1%, respectively. The sensitivity and specificity of plasma TSG-6 for evaluating the prognosis of DCM heart failure were 95.2% and 66.7%, respectively. The sensitivity and specificity of plasma TSG-6 combined with NT-proBNP for prognostic evaluation of DCM heart failure were 85.7% and 81.2%, respectively. The specificity of plasma TSG-6 combined with NT-proBNP for the prognosis of heart failure was better than that of NT-proBNP or TSG-6 alone (P<0.001). The plasma levels TSG-6 in DCM patients with heart failure increase significantly, and the plasma levels TSG-6 could be used as a new predictor for cardiac function, myocardial fibrosis, and prognosis.
Read full abstract