Arthritis leads to bone erosion due to an imbalance between osteoclast and osteoblast function. Our prior investigations revealed that the Ca 2+ -selective ion channel, Orai1, is critical for osteoclast maturation. Here, we show that the small-molecule ELP-004 preferentially inhibits transient receptor potential canonical (TRPC) channels. While ELP-004 minimally affected physiological RANKL-induced osteoclast maturation in murine bone marrow– and spleen-derived myeloid cells (BMSMCs) and human PBMC-derived cells, it potently interfered with osteoclast maturation driven by TNFα or LTB4. The contribution of TRPC channels to osteoclastogenesis was examined using BMSMCs derived from TRPC4 −/− or TRPC(1–7) −/− mice, again revealing preferential interference with osteoclastogenesis driven by proinflammatory cytokines. ELP-004 also reduced bone erosion in a mouse model of rheumatoid arthritis. These investigations reveal TRPC channels as critical mediators of inflammatory bone erosion and provide insight into the major target of ELP-004, a drug currently in preclinical testing as a therapeutic for inflammatory arthritis.
Read full abstract