The first steps in vision take place in photoreceptor cells, which are highly compartmentalized neurons exhibiting significant structural variation across species. The light-sensitive ciliary compartment, called the outer segment, is located atop of the cell soma, called the inner segment. In this study, we present an ultrastructural analysis of human photoreceptors, which reveals that, in contrast to this classic arrangement, the inner segment of human rods extends alongside the outer segment to form a structure hereby termed the "accessory inner segment". While reminiscent of the actin-based microvilli known as "calyceal processes" observed in other species, the accessory inner segment is a unique structure: (1) it contains an extensive microtubule-based cytoskeleton, (2) it extends far alongside the outer segment, (3) its diameter is comparable to that of the outer segment, (4) it contains numerous mitochondria, and (5) it forms electron-dense structures that likely mediate adhesion to the outer segment. Given that the spacing of extrafoveal human photoreceptors is more sparse than in non-primate species, with vast amounts of interphotoreceptor matrix present between cells, the closely apposed accessory inner segment likely provides structural support to the outer segment. This discovery expands our understanding of the human retina and directs future studies of human photoreceptor function in health and disease.