Mantle xenoliths provide effective records of the metasomatic processes that affect continental lithosphere evolution, such as interaction with subducted components or modification via small-degree melts. Correlations between major/trace element geochemistry with stable and radiogenic isotope compositions can help constrain the source and timing of this metasomatism. We report new δ18O, δ44/40Ca, and δD values for twelve kimberlite-hosted mantle xenoliths from the Slave Craton (NWT, Canada), which show varying degrees of metasomatism. The δ18O values of olivine (δ18Ool = +5.33 ± 0.13‰; 1σ; n = 12) overlap average mantle values. Clinopyroxene and garnet δ18O values (δ18Ocpx = +5.31 ± 0.10‰; δ18Ogrt = +5.37 ± 0.23‰; 1σ) extend below those reported in most mantle peridotites and are strongly correlated with clinopyroxene δ44/40Ca (avg. = +1.00 ± 0.10‰; 1σ) and garnet δ44/40Ca (avg. = +1.18 ± 0.19‰; 1σ) respectively, extending from typical mantle values to low δ18O and high δ44/40Ca values. In general, Δ18Ocpx-ol and Δ18Ogrt-ol (ranging from −0.19‰ to +0.19‰ and from −0.56‰ to +0.35‰, respectively) are lower than expected equilibrium values at mantle temperatures. Strong negative correlations are found between δ18Ogrt and Δ18Ogrt-ol and garnet major and trace element composition (Na2O, H2O, La/YbN). Furthermore, phlogopite-bearing kelyphitic rims have δD values (avg. = −126 ± 13‰; 1σ) lower than typical mantle values. Whole rock Sm-Nd model ages and oxygen isotope diffusion modeling suggest that metasomatism occurred during the Mesozoic, shortly before kimberlite entrainment, consistent with indications from diamond-forming fluids from the Slave craton. The combined low δ18O, δD, and high δ44/40Ca signature of the mantle peridotite xenoliths, along with the age constraints, suggest the metasomatic fluid/melt is sourced from a recycled oceanic crust component related to Mesozoic subduction in western North America.