Lateral dispersion significantly directs the assessment of rockfall hazard and design of countermeasures. In the present study, the dependence of lateral dispersion on different controlling factors has been systematically evaluated by performing laboratory tests using three different rock block types, namely circular block, and two types of elliptical block. The three types of rock block are released onto an inclined surface with the identical initial status. Parallel, anti-parallel, and oblique impact tests set at slope angles of 22.5° and 45°are conducted to study the block-slope interaction of rockfall. Lateral dispersion of rockfall is less influenced by the block shape for the oblique impact, while the post-impact behaviors are greatly affected by the block shape. The key factors influencing the deviation of the post-impact trajectory direction are the slope angle (θ) and direction difference (Δφ). An empirical model is then developed to characterize the deviation distribution of lateral dispersion by 5th and 95th percentile values with the inclusion of the two key factors. Linear function can be used to describe the 5th percentile boundary, while hyperbolic function is good for the 95th percentile boundary, which need to be validated by field tests in the subsequent research.