Shearers and roadheaders are commonly used to extract useful mineral deposits, especially hard coal, and for drilling roadways in underground mines, tunnels and other underground buildings in civil engineering. As the primary working process of this type of machines, mechanical mining of rocks is carried out by cutting. These machines' working units are equipped for this purpose with picks, usually conical (point-attack). They have the form of an axially symmetrical body consisting of a steel shaft and a tip usually made of tungsten carbide, connected by a hard brass solder. Due to the possibility of spontaneous rotation in the pick holders and even wear and tear of their tip around the entire perimeter, conical picks have a much longer service life compared to radial picks. Their life, especially when cutting hard and sharp abrasive rocks, is, however, still unsatisfactory. Rapid wear of the picks leads to a decrease in mining efficiency, an increase in this process's energy consumption, and an increase in dynamic surplus to which the cutting machine is subject. Among many forms of wear and tear of the conical picks, attention was paid to the problem of asymmetrical abrasive wear of the tips, pulling out the connection of the soldered pick tip and fatigue breaking of the pick shafts in the transition zone of the shank into the shoulder. The article presents original propositions of modification of the construction of the roadheaders/shearers conical pick shafts and the method of fixing the tip in the pick shaft in order to increase their operational durability significantly. The technologies and devices necessary to manufacture conical picks of the proposed structure were described. The developed modifications significantly contribute to the improvement of functional properties, including the reliability of conical picks, used in particular for hard rock mining.
Read full abstract