Robustness of a supply network highly depends on its structure. Although structural design methods have been proposed to create supply networks with optimal robustness, a real-life supply network can be quite different from these optimal structural designs. Meanwhile, real cases such as Thailand floods and Tohoku earthquake demonstrate the vulnerability of supply networks in real life. Obviously, it is urgent to enhance the robustness of existing real-life supply networks. Thus, in this paper, a supply network reconfiguration method based on adaptive variable neighborhood search (AVNS) is proposed to enhance the structural robustness of supply networks facing both random and target disruptions. Firstly, a supply network model considering the heterogeneous roles of entities is introduced. Based on the model, two robustness metrics, Rr and Rt, are proposed to describe the tolerance of supply networks facing random and target disruptions, respectively. Then, the problem of reconfiguration-based supply network robustness enhancement is described. To solve the problem effectively and efficiently, a new heuristic based on general variable neighborhood search, namely, AVNS, is proposed. Finally, a case study based on three real-life supply networks is presented to verify the applicability and effectiveness of the proposed robustness enhancing method.