Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent chronic liver condition characterized by excessive hepatic fat accumulation. Early diagnosis is crucial as NAFLD can progress to more severe conditions like steatohepatitis, fibrosis, cirrhosis, and hepatocellular carcinoma without timely intervention. While liver biopsy remains the gold standard for NAFLD assessment, abdominal ultrasound (US) imaging has emerged as a widelyadopted non-invasive modality due to convenience and low cost. However, the subjective interpretation of US images is challenging and unpredictable. This study proposes a deep learning-based computer-aided diagnosis (CAD) model, termed potent boosts channel-aware separable intent - ConvNeXt (PBCS-ConvNeXt), for automated NAFLD classification using B-mode US images. The model architecture comprises three key components: The potent stemcell, an advanced trainable preprocessing module for robust feature extraction; Enhanced ConvNeXt Blocks that amplify channel-wise features to refine processing; and the boosting block that integrates multi-stage features for effective information extraction from US data. Utilizing fatty liver gradings from attenuation imaging (ATI) as the ground truth, the PBCS-ConvNeXt model was evaluated using 5-fold cross-validation, achieving an accuracy of 82%, sensitivity of 81% and specificity of 83% for identifying fatty liver on abdominal US. The proposed CAD system demonstrates high diagnostic performance in NAFLD classification from US images, enabling early detection and informing timely clinical management to prevent disease progression.
Read full abstract