This paper develops a robust and efficient estimation procedure for quantile partially linear additive models with longitudinal data, where the nonparametric components are approximated by B spline basis functions. The proposed approach can incorporate the correlation structure between repeated measures to improve estimation efficiency. Moreover, the new method is empirically shown to be much more efficient and robust than the popular generalized estimating equations method for non-normal correlated random errors. However, the proposed estimating functions are non-smooth and non-convex. In order to reduce computational burdens, we apply the induced smoothing method for fast and accurate computation of the parameter estimates and its asymptotic covariance. Under some regularity conditions, we establish the asymptotically normal distribution of the estimators for the parametric components and the convergence rate of the estimators for the nonparametric functions. Furthermore, a variable selection procedure based on smooth-threshold estimating equations is developed to simultaneously identify non-zero parametric and nonparametric components. Finally, simulation studies have been conducted to evaluate the finite sample performance of the proposed method, and a real data example is analyzed to illustrate the application of the proposed method.
Read full abstract