The steer-by-wire system is a next generation steering control technology that has been actively studied because it has many advantages such as fast response, space efficiency due to removal of redundant mechanical elements, and high connectivity with vehicle chassis control, such as active steering. Steer-by-wire system has disturbance composed of tire friction torque and self-aligning torque. These disturbances vary widely due to the weight or friction coefficient change. Therefore, disturbance compensation logic is strongly required to obtain desired performance. This paper proposes model-based controller with disturbance compensation to achieve the robust control performance. Targeted steer-by-wire system is identified through the experiment and system identification method. Moreover, model-based controller is designed using the identified plant model. Disturbance of targeted steer-by-wire is estimated using disturbance observer(DOB), and compensate the estimated disturbance into control input. Experiment of various scenarios are conducted to validate the robust performance of proposed model-based controller.